Abstract
Fetal exposure to alcohol can have multiple deleterious effects, including learning disorders and behavioral and executive functioning abnormalities, collectively termed fetal alcohol spectrum disorders. Neonatal mice lacking both calcium-/calmodulin-stimulated adenylyl cyclases (ACs) 1 and 8 demonstrate increased vulnerability to ethanol (EtOH)-induced neurotoxicity in the striatum compared with wild-type (WT) controls. However, the developmental impact on surviving neurons is still unclear. WT and AC1/8 double knockout (DKO) mice were administered 1 dose of EtOH (2.5 g/kg) between postnatal days 5 to 7 (P5-7). At P30, brains were removed and processed for Golgi-Cox staining. Medium spiny neurons (MSNs) from the caudate putamen were analyzed for changes in dendritic complexity; number of branches, branch points and terminals, total and average dendritic length; spine density and soma size. EtOH significantly reduced the dendritic complexity and soma size in surviving MSNs regardless of genotype without affecting spine density. In the absence of EtOH, genetic deletion of AC1/8 reduced the dendritic complexity, number of branch points, spine density, and soma size of MSNs compared with WT controls. These data indicate that neonatal exposure to a single dose of EtOH is sufficient to cause long-term alterations in the dendritic complexity of MSNs and that this outcome is not altered by the functional status of AC1 and AC8. Therefore, although deletion of AC1/8 demonstrates a role for the ACs in normal morphologic development and EtOH-induced neurodegeneration, loss of AC1/8 activity does not exacerbate the effects of EtOH on dendritic morphology or spine density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.