Abstract

BackgroundAbout 20–30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. The developmental mechanisms by which RGCs are specified are still largely unknown. Brn3a is a member of the Brn3/Pou4f transcription factor family, which contains key regulators of RGC postmitotic specification. In particular, Brn3a ablation results in the loss of RGCs with small, thick and dense dendritic arbors (‘midget-like’ RGCs), and morphological changes in other RGC subpopulations. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts.MethodsWe now focus on a subset of 28 candidate genes encoding potential cell type determinant proteins. We validate and further define their retinal expression profile at five postnatal developmental time points between birth and adult stage, using in situ hybridization (ISH), RT-PCR and fluorescent immunodetection (IIF).ResultsWe find that a majority of candidate genes are enriched in the ganglion cell layer during early stages of postnatal development, but dynamically change their expression profile. We also document transcript-specific expression differences for two example candidates, using RT-PCR and ISH. Brn3a dependency could be confirmed by ISH and IIF only for a fraction of our candidates.ConclusionsAmongst our candidate Brn3a target genes, a majority demonstrated ganglion cell layer specificity, however only around two thirds showed Brn3a dependency. Some were previously implicated in RGC type specification, while others have known physiological functions in RGCs. Only three genes were found to be consistently regulated by Brn3a throughout postnatal retina development – Mapk10, Tusc5 and Cdh4.

Highlights

  • About 20–30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain

  • We find that RNA sequencing (RNASeq) and in situ hybridization (ISH) data are in good agreement with regard to RGC enrichment and only to some extent to Brn3a regulation of our target genes at P3, but that many of the tested targets exhibit significant changes in expression profile between P0 and P22

  • Screening strategy To identify genes that could be responsible for RGC type specification in Brn3a-knockout retinas, we performed an in situ hybridization screen using a set of potential Brn3a-specific target genes recently identified in our RGC-specific RNASeq screening [5]

Read more

Summary

Introduction

About 20–30 distinct Retinal Ganglion Cell (RGC) types transmit visual information from the retina to the brain. To identify downstream molecular mechanisms underlying Brn3a effects on RGC numbers and morphology, our group recently performed a RNA deep sequencing screen for Brn3a transcriptional targets in mouse RGCs and identified 180 candidate transcripts. Retinal ganglion cells (RGCs) are the only neurons in the vertebrate retina which are directly connected to the brain. Mouse RGCs can be subdivided in ~ 30 different types with distinct specific molecular markers, dendritic arbor morphologies, synaptic partners and axonal projections [1,2,3,4,5]. At P22 RGC axons and dendritic arbors are already “mature”, and cells are completely specified into multiple subtypes [11]. Numerous screens seeking to identify RGC subpopulation specific molecules were performed [12, 13], but we still do not have a comprehensive footprint of RGC diversity in terms of unique molecular signatures

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call