Abstract

A morphometric analysis of the developing organ of Corti and its component hair cells was carried out in an age-graded series of Syrian golden hamsters with the aid of scanning electron microscopy. The purpose was to establish a quantitative framework that would provide insight into the rules and principles by which the mammalian cochlea attains its adult proportions. This study examined postnatal development at two day intervals from birth to 22 days after birth. Our analysis included measures of cochlear length and hair cell numbers as well as measures of hair cell sizes in each of five sectors along the cochlear spiral. Our results demonstrate several principles of cochlear development: 1) The full two and one-fourths turns seen in the adult cochlea are already present at birth, but the cochlea continues to elongate for the next 10-12 days. 2) Development of hair cells in the apex generally lags behind that in the base. Whereas the stereocilia and apical margins of hair cells are clearly defined in the basal turn, they become well defined in the apex only postnatally. 3) Growth in cochlear length occurs mainly by increases in cell size rather than in cell numbers; although hair cells do increase in numbers during the first 4 days of cochlear growth, this increase involves addition of hair cells only to preexisting regions of the cochlear apex. Moreover, the full complement of hair cells is established 6 days before the full size of the cochlea is attained; in contrast, hair cell growth occurs at all positions along the cochlear spiral and spans the entire period of cochlear elongation. 4) The period of hair cell growth exceeds the period of organ of Corti growth and appears to be possible by decreases in intercellular spacing, primarily in the apical region of the cochlea; inner and outer hair cell growth was complete between 16 and 18 days after birth. 5) Inner and outer hair cell neighbors remain virtually constant at different ages indicating that the spatial relationships between the two hair cell populations is preserved as the cochlea grows. 6) Comparison with previous developmental studies of auditory function in the hamster reveals that the age of 16 days after birth, when hair cells attain their mature sizes, coincides with the onset of brainstem auditory evoked responses. Growth of hair cell somas alone, however, cannot explain either the subsequent maturation of evoked potential thresholds or changes in frequency representation in the developing cochlea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call