Abstract

Choline acetyltransferase (ChAT) immunocytochemistry was used to examine the distribution and ultrastructural features of the acetylcholine (ACh) innervation in the dorsal hippocampus of postnatal rat. The length of ChAT-immunostained axons was measured and the number of ChAT-immunostained varicosities counted, in each layer of CA1, CA3, and dentate gyrus, at postnatal ages P8, P16, and P32. At P8, an elaborate network of varicose ChAT-immunostained axons was already visible. At P16, the laminar distribution of this network resembled that in the adult, but adult densities were reached only by P32. Between P8 and P32, the mean densities for the three regions increased from 8.4 to 14 meters of axons and 2.3 to 5.7 million varicosities per cubic millimeter of tissue. At the three postnatal ages, the ultrastructural features of ChAT-immunostained axon varicosities from the strata pyramidale and radiatum of CA1 were similar between layers and comparable to those in adult, except for an increasing frequency of mitochondria (up to 41% at P32). The proportion of these profiles displaying a synaptic junction was equally low at all ages, indicating an average synaptic incidence of 7% for whole varicosities, as previously found in adult. The observed junctions were small, usually symmetrical, and made mostly with dendritic branches. These results demonstrate the precocious and rapid maturation of the hippocampal cholinergic innervation and reveal its largely asynaptic nature as soon as it is formed. They emphasize the remarkable growth capacities of individual ACh neurons and substantiate a role for diffuse transmission by ACh during hippocampal development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.