Abstract

The postnatal development of several proteins irreversibly labeled by [3H]flunitrazepam in membranes from rat cerebral cortex was investigated. It was demonstrated that in the early postnatal days proteins with apparent molecular weights 55,000 and 59,000 were predominantly labeled whereas irreversible labeling of a protein with apparent molecular weight 51,000 started to predominate only in the second postnatal week. Irreversible labeling of another protein with apparent molecular weight 62,000 was weak throughout development. All these proteins seem to be associated with central benzodiazepine receptors. Irreversible labeling at various time points after birth seems to parallel the postnatal development of these proteins, and the different time course of development and different binding properties of the individual proteins support the hypothesis that these proteins are associated with separate and distinct benzodiazepine receptor subtypes. The pharmacological properties of the individual receptor subtypes seem to be fully developed in the early postnatal days, and therefore newborn animals seem to be a good model system for the investigation of properties and function of these various benzodiazepine receptor subtypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call