Abstract

Morphological changes in individual corticorubral fibers and the pattern of crossed and uncrossed corticorubral projections were studied during the postnatal development of cats in order to understand cellular mechanisms for restriction of corticorubral projections with development. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) was injected into restricted areas of the pericruciate cortex in kittens and PHA-L-labeled axons in the red nucleus were examined at postnatal days (PND) 7-73. In accordance with our previous study (Murakami and Higashi, Brain Res. 1988; 447:98-108), a crossed corticorubral projection was observed in addition to the uncrossed one in every experimental animal. During the early period of development (PND 7-8), swellings of irregular shape were observed along the entire course of the axons and they were often interconnected with extremely fine axonal segments. These axons bifurcated only infrequently and often ended as growth cones. These features were common to both uncrossed and crossed corticorubral axons. At later stages of development (PND 28 or later), the total number of swellings decreased and axonal swellings with smooth contours became dominant. A quantitative examination of axonal branches indicated that axons on the ipsilateral side branch occurred more frequently at later stages of development. However, there was no substantial change in branching frequency for the crossed corticorubral fibers during development. In parallel with morphological changes in individual axons, the crossed projection that was initially relatively abundant was reduced during development. Since a PHA-L injection can be confined to a small region of cortex, topographic projections can easily be detected. At PND 7-8 there was no well-defined topographic order in the ipsilateral corticorubral projection. Adult-like topography was first discernible at PND 13. These observations suggest that the unilateral uncrossed corticorubral projection in the adult cat is achieved at least in part by the formation of axonal arbors in the uncrossed projection. This was accompanied by the failure of crossed fibers to form complex arbors. It is possible that a similar mechanism also operates in the formation of topographic maps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call