Abstract

This study examines developmental changes in CB glomus cell depolarization, intracellular calcium ([Ca(2+)](i)) and the magnitude of an O(2)-sensitive background ionic conductance that may play roles in the postnatal increase in oxygen sensitivity of glomus cells isolated from rats of 1-3 days and 11-14 days postnatal age. Using fura-2 and perforated patch whole cell recordings, we simultaneously measured [Ca(2+)](i) and membrane potential (E(m)) during normoxia and hypoxia. Resting E(m) in normoxia was similar at both ages. Hypoxia caused a larger E(m) depolarization and correspondingly larger [Ca(2+)](i) response in glomus cells from 11- to 14-day-old rats compared to 1-3-day-old rats. E(m) and [Ca(2+)](i) responses to 40mM K(+) were identical between the two age groups. Under normoxic conditions both age groups had similar background conductances. Under anoxic conditions (at resting membrane potential) background K(+) conductance decreased significantly more in cells from 11- to 14-day-old rats compared to cells from 1- to 3-day-old rats. Glomus cells from newborns therefore have less O(2)-sensitive background K(+) conductance. These results support the hypothesis that postnatal maturation of glomus cell O(2) sensitivity involves developmental regulation of the expression and/or O(2)-sensitivity of background ionic conductances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call