Abstract

wnt/β-catenin signaling has been shown to influence bone homeostasis and is important for parathyroid hormone (PTH)-induced bone gain. To further understand the role of β-catenin in the early stages of osteoblastic lineage cells for postnatal bone homeostasis and the anabolic actions of PTH on bone, we examined mice with postnatal disruption of β-catenin in osterix-expressing cells (β-catenin KO mice) by mating floxed β-catenin mice with transgenic mice expressing cre under the control of the osterix promoter suppressible by doxycycline. After withdrawal of doxycycline, β-catenin KO mice developed progressive bone loss, ectopic cartilage formation, accumulation of mesenchymal stromal cells, and bone marrow adiposity. The β-catenin-defective osteoblasts sorted by flow cytometry from β-catenin KO mice exhibited decreased EdU incorporation, increased annexin V activity, and profound alterations in gene expression including wnt target genes, osteoclast regulators, and osteoblast markers. A dramatic increase in osteoclasts was observed in both neonatal and postnatal β-catenin KO mice. Intermittent administration of PTH for 4weeks significantly increased bone mass in control mice; however, this anabolic effect of PTH was substantially blunted in β-catenin KO mice. Our data indicate that β-catenin in osterix-expressing cells is required for postnatal osteoblast differentiation, osteoblast proliferation, and bone resorption, and is essential for the anabolic actions of PTH in bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call