Abstract
Low birth weight and rapid postnatal weight gain are independent predictors of obesity and diabetes in adult life, yet the molecular events involved in this process remain unknown. In inbred and outbred mice, this study examines natural intrauterine growth restriction (IUGR) in relation to body weight, telomere length (TL), glucose tolerance, and growth factor gene (Igf1, Igf2, Insr, Igf1r, and Igf2r) mRNA expression levels in the brain, liver, and muscle at 2- and 10 days of age and then at 3- and 9 months of age. At birth, ~15% of the animals showed IUGR, but by 3 and 9 months, half of these animals had regained the same weight as controls without IUGR (recuperated group). At 10 days, there was no difference in TL between animals undergoing IUGR and controls. However, by 3 and 9 months of age, the recuperated animals had shorter TL than the control and IUGR-non recuperated animals and also showed glucose intolerance. Further, compared to controls, Igf1 and Igf2 growth factor mRNA expression was lower in Day 2-IUGR mice, while Igf2r and Insr mRNA expression was higher in D10-IUGR animals. Moreover, at 3 months of age, only in the recuperated group were brain and liver Igf1, Igf2, Insr, and Igf2r expression levels higher than in the control and IUGR-non-recuperated groups. These data indicate that catch-up growth but not IUGR per se affects TL and glucose tolerance, and suggest a role in this latter process of insulin/insulin-like growth signaling pathway gene expression during early development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.