Abstract
Autopsy rates are declining globally, impacting cause-of-death (CoD) diagnoses and quality control. Postmortem metabolomics was evaluated for CoD screening using 4,282 human cases, encompassing CoD groups: acidosis, drug intoxication, hanging, ischemic heart disease (IHD), and pneumonia. Cases were split 3:1 into training and test sets. High-resolution mass spectrometry data from femoral blood were analyzed via orthogonal-partial least squares discriminant analysis (OPLS-DA) to discriminate CoD groups. OPLS-DA achieved an R2= 0.52 and Q2= 0.30, with true-positive prediction rates of 68% and 65% for training and test sets, respectively, across all groups. Specificity-optimized thresholds predicted 56% of test cases with a unique CoD, average 45% sensitivity, and average 96% specificity. Prediction accuracies varied: 98.7% for acidosis, 80.5% for drug intoxication, 81.6% for hanging, 73.1% for IHD, and 93.6% for pneumonia. This study demonstrates the potential of large-scale postmortem metabolomics for CoD screening, offering high specificity and enhancing throughput and decision-making in human death investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.