Abstract

BackgroundOsteoporosis (OP) and osteoarthritis (OA) are two common musculoskeletal disorders that affect the quality of life in aged people. An inverse relationship between OP and OA was proposed four decades ago. However, the difference in microstructure of the trabecular bone of these two disorders by high-resolution MRI (HR-MRI) has not been compared. The primary objective of the study is to explain the actual relationship between OA and OP based on differences between bone microstructure of these two diseases. The secondary objectives are to find out the significance of Euler number and its relationship with other structural parameters, and important role of HR-MRI to reveal the microstructure of trabecular bone directly.MethodsTotally, 30 women with OP and 30 women with OA (n = 60) were included in this study. Primary OA of hip, knee, as well as spinal arthrosis were diagnosed according to plain X-ray film findings. Osteoporosis was defined based on the latest criteria of World Health Organization (WHO). Structural and textural parameters derived from HR-MRI images of proximal tibia were calculated and compared with special software.ResultsThere were significant differences in apparent bone volume fraction, trabecular thickness, mean roundness, Euler number, entropy and inverse different moment between OP and OA patients. In OP group, apparent trabecular separation (Tb.Sp), inertia, absolute value and contrast were positively correlated with Euler number, whereas apparent trabecular number (Tb.N), mean trabecular area, inverse difference and inverse different moment were negatively correlated. Apparent trabecular bone volume fraction (BV/TV), mean trabecular area, mean trabecular perimeter and mean skeleton length negatively correlated with Euler number in OA group. Inverse different moment was the texture parameter, which influenced bone mineral density (BMD) of femoral neck, meanwhile contrast influenced BMD of both great trochanter and Ward’s triangle in OP group. While in OA group, Euler number was the exclusive parameter, which affected BMD of femoral neck and Ward’s triangle.ConclusionsWe found significant differences in microstructure parameters derived from HR-MRI images between postmenopausal women with OP and OA. It convincingly supports the hypothesis that there might be an inverse relationship between OP and OA.

Highlights

  • Osteoporosis (OP) and osteoarthritis (OA) are two common musculoskeletal disorders that affect the quality of life in aged people

  • The relationship between OA and OP has been investigated with regard to subchondral bone plates [37,38] or metabolism properties of bone [39], and we have found differences in ultrastructural characteristics of trabecular bone of the femoral head by electron microscopy in previous study [40], the in vivo microstructure of trabecular bone obtained using high-resolution MRI (HR-MRI) has not been compared between these two diseases

  • The Mann–Whitney U test demonstrated that the OP and OA patients had significant statistical difference in apparent bone volume fraction, trabecular thickness, mean roundness, Euler number, entropy and inverse different moment (p < 0.05)

Read more

Summary

Introduction

Osteoporosis (OP) and osteoarthritis (OA) are two common musculoskeletal disorders that affect the quality of life in aged people. Osteoarthritis is a kind of disease, which shows degenerative changes to articular cartilage and hyperplasia of bone and other connective tissues. An interesting observation shows that both the diseases rarely occur in the same patient, and if OA patients suffer OP fractures, they are usually in elderly than other people, which means OA and relevant factors may have a positive protective effect on OP fractures. This subject is still unclear and complicated, and more research needs to be carried out to understand it fully [8,18]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call