Abstract

ABSTRACT Postmenopausal osteoporosis (PMOP) is a chronic bone metabolic disease, which often causes fractures and various complications, it causes a great social and economic burden, and it is urgent to use modern research techniques to elucidate the pathogenesis of PMOP. At the same time, because of the complex physiological and pathological interaction mechanism between osteoporosis and sarcopenia, the correlation research has become a hot topic. Ovary removal is a commonly used experimental method to study the endocrine system of female animals, and it is also the best animal model to study PMOP. In this study, the preparation of the ovariectomized rat was confirmed through the detection of vaginal smear, the level of bone formation markers, and the analysis of bone tissue morphology. Transcriptome sequencing was used to analyze the molecular mechanism of PMOP in ovariectomized rats, qRT-PCR was used to verify the key targets. Results of Micro-CT and scanning electron microscopy (SEM) showed that the trabecular structure was disorganized and the symptoms of osteoporosis appeared, this indicating that the ovariectomized rats model was successfully prepared. Transcriptional sequencing results of femur tissue showed that 452 differentially expressed genes (DEGs) were screened. Bioinformatics analysis results showed that the osteoporosis caused by ovariectomized rats was mainly related to muscle contraction, calcium signaling pathway, etc. Results of qRT-PCR were consistent with transcriptome analysis. These results reveal the pathogenesis of PMOP in ovariectomized rats and also offer a possibility for elucidating the relevance of action between PMOP and sarcopenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call