Abstract

Mating triggers a cascade of physiological and behavioural responses in females that persist after copulation. In insects, seminal fluid proteins contained within male ejaculates are known to initiate some responses, but our understanding of how females mediate these reactions remains limited. Few studies have examined postmating transcriptional changes within ejaculate-receiving organs within females or how these changes might depend on the identity of the male. Furthermore, whereas males of many insects transfer packaged ejaculates, transcriptional dynamics have mainly been examined in dipterans, in which males transfer a free ejaculate. To identify genes that may be important in mediating female physiological responses in a spermatophore-producing species, we sequenced the transcriptomes of the ejaculate-receiving organs and examined postmating gene expression within and between pheromone strains of the European corn borer (ECB) moth, Ostrinia nubilalis. After within-strain mating, significant differential expression of 978 transcripts occurred in the female bursa or its associated bursal gland, including peptidases, transmembrane transporters, and hormone processing genes; such genes may potentially play a role in postmating male-female interactions. We also identified 14 transcripts from the bursal gland that were differentially expressed after females mated with cross-strain males, representing candidates for previously observed postmating reproductive isolation between ECB strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call