Abstract

During earthquake events, low-plasticity silt undergoes a reduction in shear strength and stiffness due to development of excess pore pressure induced by cyclic loading. With reconsolidation, during which process excess pore pressure is dissipated, the shear strength and stiffness can be regained. However, due to the low permeability of silts (compared to sands), the dissipation of excess pore pressure and the reconsolidation of low-plasticity silt takes much more time. This paper investigates the postliquefaction shear behavior of Mississippi River Valley (MRV) silt at various degrees of reconsolidation using triaxial tests. Test results indicate that there was a steady increase, in shear strength and stiffness, at both large and small deformations, with increase in the degree of reconsolidation. The postliquefaction silt showed the effect of the apparent OCR, which had a close effect on postcyclic shear behavior as did the OCR on the static behavior. The critical state lines of MRV silt were different for pre- and post-liquefaction conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call