Abstract
A small reduction of body temperature during reperfusion following cerebral ischemia has been known to ameliorate neuronal injury. However, the mechanisms underlying postischemic hypothermia-induced neuroprotection are poorly understood. The burst of reactive oxygen species (ROS) formation that occurs during reperfusion has been documented to be involved in ischemic neuronal degeneration. In this study, we investigated the effect of postischemic hypothermia on ROS production following transient forebrain ischemia using an in vivo microdialysis technique. Forebrain ischemia was induced by bilateral carotid artery occlusion combined with hemorrhagic hypotension for 20 min in male Wistar rats. The body temperature was kept at 37 degrees C during ischemia and controlled at either 32 degrees C or 37 degrees C after reperfusion. The amount of hydroxyl radical produced in striatum was evaluated by measurement of 2,3- and 2,5-dihydroxybenzoic acid (DHBA), which is generated by salicylate hydroxylation. We also measured the extracellular concentration of xanthine, while determining striatal blood flow by the hydrogen clearance technique. In animals whose postischemic body temperature was maintained at 37 degrees C, the levels of 2,3- and 2,5-DHBA significantly increased after reperfusion. The peak levels of 2,3- and 2,5- DHBA were 2.9-fold and 2.7-fold increased above the corresponding baseline values, respectively. Postischemic hypothermia completely inhibited the hydroxyl radical formation. Likewise, xanthine formation was also inhibited by postischemic hypothermia. In contrast, striatal cerebral blood flow was not altered by temperature modulation during reperfusion. These results suggest that inhibition of ROS production accompanied with suppression of xanthine formation is implicated in the neuroprotection of postischemic hypothermia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.