Abstract

Hot-pressed high-density (TShG-type) beryllium was irradiated at 100°C up to the fast neutron fluence of 1 × 10 26 n/m 2. Transmutation tritium and helium contents were 652 and 4400 appm, respectively. Post-irradiation studies of beryllium consist of optical and electron microscopy, density measurements before and after isochronal annealing at the temperature range of 300–1100°C and thermodesorption gas spectrometry. Investigation shows the following: (1) Slight swelling of beryllium after neutron irradiation. (2) Spatial non-uniformity in the distribution of the pores. (3) Complicated dependence of swelling on annealing temperature caused by formation of gas porosity. In the temperature range from 500 to 800°C, swelling of beryllium was probably caused by growth of bubbles because of tritium mobility. At the temperature above 900°C swelling of beryllium was probably caused by growth of bubbles because of helium mobility. (4) Full degassing of the irradiated beryllium took place below its melting temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.