Abstract

In this study, high flux irradiated and surveillance high Ni and Mn and low Cu welds identical to those of the belt-line region of Ringhals R4 were subjected to annealing at temperatures between 390 and 455 °C for 24–30 h, in order to study the dissolution of irradiation induced clusters and possible matrix defects using hardness testing and atom probe tomography. It was found that the cluster characteristics did not change during annealing at 390 °C, meaning that the size, number density and composition of the clusters, which mainly consist of Ni and Mn, did not change. Thus, the observed decrease in hardness during annealing of the high flux irradiated material is believed to be due to dissolution of matrix defects that were stable at the operating temperature. Cluster dissolution was observed after annealing at 410 °C in the high flux irradiated material, leaving around 10% of the original clusters. These clusters contained more Cu and less Ni and Mn than before annealing. The cluster dissolution at temperatures above 400 °C correlated with the decrease in hardness. The larger clusters of the surveillance material required a higher temperature or longer time to be dissolved compared to the clusters of the high flux material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.