Abstract

Suspension-feeding bivalves may enhance the energy value of their food supply by sorting particles both before and after ingestion. Previous research has indicated that the sea scallop ( Placopecten magellanicus (Gmelin) (Mollusca: Bivalvia)) is capable of sorting particles within the gut both on the basis of physical properties (particle size and density) as well as chemical properties. In this study, the ability of the sea scallop to sort living from dead material solely on the basis of chemical properties was tested. The microalga Chlorella (Chlorophyta: Chlorophyceae) was chosen as the test particle because its thick cell wall remains physically intact following heat treatment, while its carbon, nitrogen, and chlorophyll a content declines. Scallops were fed a mixture of radiolabelled live and heat-killed Chlorella. We demonstrate that P. magellanicus can distinguish between living and dead algae, retaining live Chlorella cells longer than heat-killed cells. This ability to detect the subtle chemical differences between living algal material and detrital material would enhance the digestive efficiency of this species by reducing the amount of energy expended, digesting poor-quality materials. This paper presents the first study of the ability of a bivalve to distinguish between two physically identical but nutritionally different forms of the same species of microalgae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call