Abstract
An axion-like-particle (ALP) in the post-inflationary scenario with domain wall number N > 1 can be dark matter if the residual ℤN symmetry has a small explicit breaking. Although we cannot determine the full dynamics of the system reliably, we provide evidence that such an ALP can account for the observed dark matter abundance while having a relatively small decay constant and consequently a possibly large coupling to photons. In particular, we determine the number of domain walls per Hubble patch around the time when they form using numerical simulations and combine this with analytic expectations about the subsequent dynamics. We show that the strongest constraint on the decay constant is likely to come from the dark matter ALPs being produced with large isocurvature fluctuations at small spatial scales. We also comment on the uncertainties on the dark matter small-scale structure that might form from these overdensities, in particular pointing out the importance of quantum pressure in the N = 1 case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.