Abstract

The healing process is a key determinant for postinfarction left ventricular (LV) remodeling and the development of heart failure, which could be influenced by mechanical (pressure and/or volume) load. So far, limited information exists regarding an indepth characterization of the postinfarct healing process in the mechanically unloaded state. In the present work, we performed isogenic Lewis-to-Lewis rat abdominal heterotopic heart transplantation, which is characterized by hemodynamic unloading in the left ventricle, and simultaneously ligated the left anterior descending coronary artery (T-infarct group). Pathological evolution was dynamically compared with that of in situ infarcted Lewis hearts (I-infarct group) on days 3, 7, 14, and 35. There was a remarkable myocardial salvage in the unloaded heart, as shown by the improvement in infarct size (T-infarct group: 25.47% ± 4.31% vs. I-infarct group: 38.46% ± 4.82%, P < 0.01) and the smaller fraction of fibrosis in infarct segments (T-infarct group: 42.12% ± 8.40% vs. I-infarct group: 75.65% ± 10.51%, P < 0.01). In addition, there was a progressive disorganization of the two-dimensional collagen fiber alignment as well as retarded collagen fiber maturation in the T-infarct group. We also observed enhanced angiogenesis, lymphangiogenesis, and inflammatory cell retention in the infarct region during mechanical unloading. Moreover, capillary density and collagen deposition were significantly increased in the noninfarcted area of the unloaded heart compared with the same region in the in situ infarcted heart. In conclusion, ischemic insult in the mechanically unloaded heart elicits an altered inflammatory and healing response, which is characterized by myocardial salvage, delayed resolution of inflammation, and disorganization of the collagen orientation in the infarcted region. These findings could provide novel insights into the contribution of hemodynamic load in the postinfarction healing process. Further studies are warranted to elucidate its potential mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.