Abstract

Splitting is a problem that seriously affects appearance and marketability in a number of fruit and vegetables. In summer radish (Raphanus sativus L.), splitting can occur during growth, harvesting and postharvest. We investigated the factors affecting splitting susceptibility in summer radish cv. Celesta during postharvest handling. Splitting susceptibility was negatively related to temperature, with higher temperature reducing splitting due to dropping impact. Radish diameter was positively associated with compression failure force, suggesting that larger radishes are more resistant to compressive splitting. An increase in radish hypocotyl water content (WC) was associated with an increase in splitting susceptibility due to impact and decrease in failure force for both compression and puncture forces. Increased hypocotyl WC may increase splitting susceptibility by increasing the water potential of the radish tissue. In agreement, we found that increased hypocotyl WC was associated with higher internal water potential in radish tissue. We therefore recommend that the hypocotyl WC of summer radish crops be managed during the harvest and postharvest phases, and that crops are processed at higher, ambient, temperature in order to reduce splitting, before storing at low temperature and high humidity to maintain quality and shelf life. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Highlights

  • Splitting in fruit and vegetables reduces marketability and exposes internal tissue to the external environment and potential pathogens.[1]

  • Experiment 3 investigated the underlying basis for the relationship between hypocotyl Water content (WC) and tissue strength by determining the effect of WC on internal water potential of the hypocotyl tissue. We hypothesized that both temperature and hypocotyl WC would influence the susceptibility of summer radish to splitting when subjected to impact from dropping, compression and puncture

  • The variance in splitting susceptibility accounted for by temperature was 76.9%. These results suggest radishes are more susceptible to splitting due to impact at lower temperatures

Read more

Summary

RESULTS

Splitting susceptibility was negatively related to temperature, with higher temperature reducing splitting due to dropping impact. Radish diameter was positively associated with compression failure force, suggesting that larger radishes are more resistant to compressive splitting. An increase in radish hypocotyl water content (WC) was associated with an increase in splitting susceptibility due to impact and decrease in failure force for both compression and puncture forces. Increased hypocotyl WC may increase splitting susceptibility by increasing the water potential of the radish tissue. We found that increased hypocotyl WC was associated with higher internal water potential in radish tissue

INTRODUCTION
RESULTS AND DISCUSSION
CONCLUSIONS

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.