Abstract

The emergent wetland plant Schoenoplectus californicus is used as fiber in several American countries, but the effects of harvesting on this species have not previously been studied. We analyzed the biomass production, stem density and morphometry of this species along fluvio-estuarine and flooding gradients and evaluated the effects of harvesting on growth and recovery capacity in the Santa Lucia River (Uruguay), comparing river sections and surface elevations. Differences in biomass, length and stem density were associated with the dynamics of the hydrological regime. The mean biomass and length growth rates were 3.0 ± 2.8 g day−1 and 0.8 ± 0.5 cm day−1, respectively. The analysis of the postharvest growth dynamic showed variation among the stems, suggesting the existence of mechanisms of plant compensation for the harvest effect. Six months after the harvest, S. californicus had recovered, e.g., in stem length and density, while the biomass showed a slower recovery. Our results suggest that the recovery capacity of this species depends on the population structure before the harvest and on favorable conditions during the recovery period. Based on our results, we recommend strategies for sustainable harvest management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call