Abstract

Ethylene production is essential for improving cold resistance of postharvest tomatoes. However, the role of ethylene signaling pathway in maintaining fruit quality during long-term cold storage remains poorly understood. Here, we demonstrated that a partial loss of function in ethylene signaling by mutation of Ethylene Response Factor 2 (SlERF2), worsened fruit quality during cold storage, as determined by visual characterization, and physiological analyses of membrane damage and reactive oxygen species metabolism. In addition, the transcriptions of genes related to abscisic acid (ABA) biosynthesis and signaling were also altered by SlERF2 gene in response to cold storage. Furthermore, mutation of SlERF2 gene compromised cold-induced expression of genes in the C-repeat/dehydration-responsive binding factor (CBF) signaling pathway. Therefore, it's concluded that an ethylene signaling component, SlERF2 contributed to the regulations of ABA biosynthesis and signaling, as well as CBF cold signaling pathway, ultimately affecting the fruit quality during long-term cold storage of tomatoes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call