Abstract

Abscisic acid (ABA) plays an important role in the regulation of several stress responses such as drought, high salinity and low temperature being also proved as a key phytohormone for the acquisition of postharvest cold tolerance in zucchini fruit. Therefore, it would be of great interest to unravel the mechanisms implicated in the ABA response, using a metabolomic approach. The aim of this work has been to use a combination of metabolomic tools to identify the main metabolic pathways involved in ABA-mediated regulation of chilling tolerance in zucchini fruit. As a result of this study, it was found that ABA modulates the primary metabolism inducing the accumulation of some sugars, organic acids such as succinic acid and amino acids including histidine, serine, phenylalanine, glutamic acid and γ-aminobutyric acid, and that are involved in low-temperature tolerance. ABA treatment also activates the t-zeatin and riboflavin biosynthesis during the first days of cold storage which can be important signals in the ABA-mediated cold response to induce tolerance in zucchini fruit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call