Abstract

Tunnicliffe, J., Church, M. & Enkin, R. J. 2012 (January): Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas, Vol. 41, pp. 84–101. 10.1111/j.1502‐3885.2011.00219.x. ISSN 0300‐9483.Seismic records and evidence from sediment cores at Chilliwack Lake provide the basis for a long‐term (postglacial) sediment budget for a 324‐km2 Cordilleran catchment. Chilliwack Lake (11.8 km2 surface area), situated in the North Cascade Mountains, near Chilliwack, British Columbia, was formed behind a valley‐wide recessional moraine in the final phase of post‐Fraser alpine glaciation. Seismic surveys highlight the postglacial lacustrine record, which is underlain by a thick layer of sediments related to deglacial sedimentation. Sediment cores provide details of grain‐size fining from the delta to the distal lake basin. The cores also show a record of intermittent fire and debris flows. Magnetic measurements of lake sediments provide information on grain size, as well as a dating framework. The total postglacial lake‐floor deposit volume is estimated to be 397 ± 27 × 106 m3. Including estimates of fan and delta deposition, the specific postglacial yield to the lake is calculated to be ∼86 ± 13 Mg km2 a−1. The sediment volume in the uppermost (Holocene) lacustrine layer is 128 ± 9 × 106 m3, representing ∼41 ± 4 Mg km2 a−1 in the Holocene. Compared with other Cordilleran lakes of similar size, particularly those with glacial cover in the watershed, Chilliwack Lake has experienced relatively modest rates of sediment accumulation. This study provides an important contribution to a growing database of long‐term (postglacial) sediment yield data for major Cordilleran lakes, essential for advancing our understanding of the pace of landscape evolution in formerly glaciated mountainous regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.