Abstract
We present and solve a gravitationally self-consistent sea-level equation which governs postglacial sea-level variations on a spherically symmetric, self-gravitating, viscoelastic and rotating Earth. We find that the inclusion of a glacio-isostatically induced rotational excitation can significantly affect previous predictions of both present-day sea-level rates and postglacial sea-level histories which were based on a theory that assumed a non-rotating Earth model. To illustrate, we consider present-day sea-level rates (and tide-gauge corrections) along the US east coast, and relative sea-level curves in the far field of the late Pleistocene ice sheets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Geophysical Journal International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.