Abstract

BackgroundDistributions of European fish species were shaped by glaciations and the geological history of river networks until human activities partially abrogated the restrictions of biogeographical regions. The nearby origins of the Rhine, Rhone, Danube and Po rivers in the Swiss Alps allow the examination of historical and human-influenced patterns in fish genetic structure over a small geographic scale. We investigated these patterns in the widespread European chub (Squalius cephalus) from the Rhone, Rhine and Danube catchments and its proposed southern sister species Italian chub (Squalius squalus) from the Po catchment.ResultsA phylogenetic tree constructed from mitochondrial Cytochrome b and COI sequences was consistent with earlier work in that it showed a separation of European chub and Italian chub, which was also reflected in microsatellite allele frequencies, morphological traits and shape differences quantified by geometric morphometrics. A new finding was that the predominant mitochondrial haplotype of European chub from the Rhine and Rhone catchments was also discovered in some individuals from Swiss populations of the Italian chub, presumably as a result of human translocation. Consistent with postglacial recolonizations from multiple refugia along the major rivers, the nuclear genetic structure of the European chub largely reflected drainage structure, but it was modified by watershed crossings between Rhine and Rhone near Lake Geneva as well as between Danube and Rhine near Lake Constance.ConclusionOur study adds new insights into the cyprinid colonization history of central Europe by showing that multiple processes shaped the distribution of different chub lineages around the Swiss Alps. Interestingly, we find evidence that cross-catchment migration has been mediated by unusual geological events such as drainage captures or watershed crossings facilitated by retreating glaciers, as well as evidence that human transport has interfered with the historical distribution of these fish (European chub haplotypes present in the Italian chub). The desirable preservation of evolutionarily distinct lineages will thus require the prevention of further translocations.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0750-9) contains supplementary material, which is available to authorized users.

Highlights

  • Distributions of European fish species were shaped by glaciations and the geological history of river networks until human activities partially abrogated the restrictions of biogeographical regions

  • Mitochondrial genetic variation Based on the concatenated cytochrome oxidase subunit I gene (COI) and cytochrome b (Cyt b) sequences, 22 different haplotypes could be distinguished among the 168 chub analyzed

  • Haplotypes P-W all came from fish captured in the Swiss canton of Ticino, that is in putative Italian chub (S. squalus) from the Po catchment south of the Alps (Fig. 1)

Read more

Summary

Introduction

Distributions of European fish species were shaped by glaciations and the geological history of river networks until human activities partially abrogated the restrictions of biogeographical regions. The nearby origins of the Rhine, Rhone, Danube and Po rivers in the Swiss Alps allow the examination of historical and human-influenced patterns in fish genetic structure over a small geographic scale. We investigated these patterns in the widespread European chub (Squalius cephalus) from the Rhone, Rhine and Danube catchments and its proposed southern sister species Italian chub (Squalius squalus) from the Po catchment. Populations are constrained by the geological history of a region They remain restricted to their hydrographic basins unless new interconnections or chance dispersal over land allow further expansion. The highest species diversity is found in the historically ice-free but isolated river catchments of Peri-Mediterranean and Ponto-Caspian Europe, and the lowest diversity in northern and central Europe ([3] and references therein)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.