Abstract

AimSpecies' ecological traits influence their spatial genetic patterns. Bedrock preference strongly shapes the phylogeography of alpine plants, but its interactions with other ecological traits have rarely been disentangled. Here, we explore whether dispersal ability and degree of habitat specialization account for divergent postglacial expansion patterns of high‐elevation plants in spite of similar bedrock preference.LocationThe Pyrenees, southwestern Europe.Taxon Cirsium glabrum (Asteraceae), Salix pyrenaica (Salicaceae) and Silene borderei (Caryophyllaceae).MethodsPhylogenetic, genetic structure and demographic modelling analyses based on restriction‐site‐associated DNA sequencing (RADseq) data from a range‐wide populational sampling were conducted. Occurrence data and environmental variables were used to construct species distribution models, which were projected under current and Last Glacial Maximum conditions, and were combined with RADseq data to reconstruct the postglacial history of the study species. The degree of habitat specialization of each species was estimated based on the plant communities within which they occur, and their climatic niche breadth.Results Salix pyrenaica, which occupies a broad range of habitats, shows a high level of range filling, a blurred genetic structure and an admixture cline between the two main genetic groups, congruent with rapid postglacial expansion. The microsite specialists C. glabrum and S. borderei exhibit a strong genetic structure and low levels of range filling, indicative of slow postglacial expansion. The good disperser C. glabrum shows higher levels of admixture between genetic groups and weaker population differentiation than the poor disperser S. borderei.Main ConclusionsFactors other than bedrock preference have a strong impact on the postglacial range dynamics of high‐elevation species. Habitat specialization plays an important role, allowing species occupying a broad range of habitats to more rapidly expand their ranges after environmental change. The effect of dispersal ability is lower than expected for the study species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call