Abstract

Male and female Wistar rats were run for 5 min at 1.7 mph at a 17% grade to determine whether a sex difference exists in the rate of glycogen resynthesis during recovery in fast-twitch red muscle, fast-twitch white muscle, and liver. Rats were killed at one of three time points: immediately after the exercise bout, and at 1 or 4 h later. Males had significantly higher resting muscle glycogen levels (P less than 0.05). Exercise resulted in significant glycogen depletion in both sexes (P less than 0.01). Males utilized approximately 50% more glycogen during the exercise bout than females (P less than 0.05). During the food-restricted 4-h recovery period, muscle glycogen was repleted significantly during the 1st h (P less than 0.05). Liver glycogen was not depleted as a result of the exercise bout, but fell during the first h of recovery (P less than 0.05) and remained low during the subsequent 3 h. The greater glycogen utilization in red and white fast-twitch muscle during exercise by males could represent a true sex difference but could also be attributable in part to the males having performed more work as a result of 20% greater body mass. We conclude that no sex difference was observed in the rates of muscle glycogen repletion after exercise or in liver glycogen metabolism during and after exercise, and rapid postexercise muscle glycogen repletion occurred at a time of accelerated liver glycogen depletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.