Abstract
Hot water immersion (HWI) after exercise on 6 consecutive days in temperate conditions has been shown to provide heat acclimation adaptations in a recreationally active population. Endurance athletes experience frequent, sustained elevations in body temperature during training and competition; as a consequence, endurance athletes are considered to be partially heat acclimatized. It is therefore important to understand the extent to which endurance trained individuals may benefit from heat acclimation by post-exercise HWI. To this end, we compared the responses of eight endurance trained and eight recreationally active males (habitual weekly endurance exercise: 9 h vs. 3 h) to a 6-day intervention involving a daily treadmill run for 40 min (65% O2max) in temperate conditions followed immediately by HWI (≤40 min, 40°C). Before (PRE) and after the intervention (POST), hallmark heat acclimation adaptations were assessed during a 40-min treadmill run at 65% O2max in the heat (33°C, 40% RH). The 6 day, post-exercise HWI intervention induced heat acclimation adaptations in both endurance trained and recreationally active individuals. Training status did not significantly influence the magnitude of heat acclimation adaptations from PRE to POST (interactions P > 0.05) for: the reduction in end-exercise rectal core temperature (Tre, mean, endurance trained -0.36°C; recreationally active -0.47°C); the reduction in resting Tre (endurance trained -0.17°C; recreationally active -0.23°C); the reduction in Tre at sweating onset (endurance trained -0.22°C; recreationally active -0.23°C); and, the reduction in mean skin temperature (endurance trained -0.67°C; recreationally active -0.75°C: PRE to POST P < 0.01). Furthermore, training status did not significantly influence the observed reductions in mean O2, mean metabolic energy expenditure, end-exercise physiological strain index, perceived exertion or thermal sensation (PRE to POST P < 0.05). Only end-exercise heart rate was influenced by training status (P < 0.01, interaction); whereby, recreationally active but not endurance trained individuals experienced a significant reduction in end-exercise heart rate from PRE to POST (P < 0.01). In summary, these findings demonstrate that post-exercise HWI presents a practical strategy to reduce thermal strain during exercise-heat-stress in endurance trained and recreationally active individuals.
Highlights
Exercise in the heat increases physiological strain, attenuates exercise capabilities and increases susceptibility to exertional heat illness and the potentially fatal, exertional heat stroke (Young et al, 1985; Binkley et al, 2002; Racinais et al, 2015)
During the 6-day intervention, Hot water immersion (HWI) duration increased from day 1 to day 6 (P < 0.05); ensuring a maintenance of the endogenous stimulus for adaptation, with a similar area under the curve (AUC) and end-HWI Tre between day 1 and day 6 (P > 0.05; Table 1)
Total immersion time (P = 0.08, d = 1.0) and total AUC (P = 0.08, d = 0.8) during the 6-day intervention tended to be greater in endurance trained than recreationally active individuals (Table 1)
Summary
Exercise in the heat increases physiological strain, attenuates exercise capabilities and increases susceptibility to exertional heat illness and the potentially fatal, exertional heat stroke (Young et al, 1985; Binkley et al, 2002; Racinais et al, 2015). In the early twentieth century, pioneering research on fatal heat stroke in the South African gold mines highlighted a high mortality in the first four shifts worked by miners under high heat exposure; in those native to cold dry areas (Cluver, 1932; Dreosti, 1935). Heat acclimation typically involves exercising in the heat on 5–14 occasions for >60-min, where core body temperature and skin temperature are elevated and perfuse sweating is initiated (Taylor, 2014; Periard et al, 2015). The adaptive responses to exercise-heat-acclimation include, but are not limited to: an earlier onset of cutaneous vasodilatation and sweating; an increase in sweating rate; a reduction in resting and exercising core body temperature; a reduction in cardiovascular strain and skin temperature; that in turn, improve thermal comfort and enhance endurance performance in the heat (Gagge et al, 1967; Lorenzo et al, 2010; Taylor, 2014)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.