Abstract

This technical note describes the construction of posterior probability maps that enable conditional or Bayesian inferences about regionally specific effects in neuroimaging. Posterior probability maps are images of the probability or confidence that an activation exceeds some specified threshold, given the data. Posterior probability maps (PPMs) represent a complementary alternative to statistical parametric maps (SPMs) that are used to make classical inferences. However, a key problem in Bayesian inference is the specification of appropriate priors. This problem can be finessed using empirical Bayes in which prior variances are estimated from the data, under some simple assumptions about their form. Empirical Bayes requires a hierarchical observation model, in which higher levels can be regarded as providing prior constraints on lower levels. In neuroimaging, observations of the same effect over voxels provide a natural, two-level hierarchy that enables an empirical Bayesian approach. In this note we present a brief motivation and the operational details of a simple empirical Bayesian method for computing posterior probability maps. We then compare Bayesian and classical inference through the equivalent PPMs and SPMs testing for the same effect in the same data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.