Abstract

BackgroundThe aims of motion preserving implants are to ensure sufficient stability to the spine, to release facet joints by also allowing a physiological loading to the intervertebral disc. The aim of this study was to assess disc load contribution by means of annular fiber strains and disc bulging of intact and stiffened segments. This was compared to the segments treated with various motion preserving implants. MethodsA laser scanning device was used to obtain three-dimensional disc bulging and annular fiber strains of six lumbar intervertebral discs (L2–3). Specimens were loaded with 500N or 7.5Nm moments in a spine tester. Each specimen was treated with four different implants; DSS™, internal fixator, Coflex™, and TOPS™. FindingsIn axial compression, all implants performed in a similar way. In flexion, the Coflex decreased range of motion by 13%, whereas bulging and fiber strains were similar to intact. The DSS stabilized segments by 54% compared to intact. TOPS showed a slight decrease in fiber strains (5%) with a range of motion similar to intact. The rigid fixator allowed strains up to 2%. In lateral bending, TOPS yielded range of motion values similar to intact, but maximum fiber strains doubled from 6.5% (intact) to 13.8%. Coflex showed range of motion, bulging and strain values similar to intact. The DSS and the rigid fixator reduced these values. The implants produced only minor changes in axial rotation. InterpretationThis study introduces an in vitro method, which was employed to evaluate spinal implants other than standard biomechanical methods. We could demonstrate that dynamic stabilization methods are able to keep fiber strains and disc bulging in a physiological range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.