Abstract

To evaluate the feasibility of a 980-nm contact diode laser (CDL) as a method for creating a posterior laryngofissure in live pigs. Twenty-eight Landrace pigs (15-20kg) were anesthetized, intubated, ventilated, and submitted to a cervical tracheostomy. An anterior and posterior midline longitudinal laryngofissure incision was created according to randomization-control (n = 4), posterior laryngofissure with a scalpel blade; electrocautery (n = 12), posterior laryngofissure by electrocautery (10, 15, 20, 25W powers); CDL (n = 12), posterior laryngofissure by the CDL (10, 15, 20, 25W peak powers in pulsed mode). Larynx and proximal trachea were excised, prepared for histopathology, and digital morphometric analysis. Measurements in and within each group were analyzed (Kruskal-Wallis and Dunn test) with a level of significance of p < 0.05. Incision width was not different between the groups, as well as in the powers used in CDL (p = 0.161) and electrocautery group (p = 0.319). The depth of the incisions was smaller in the Laser group compared to control (p = 0.007), and in the electrocautery compared to control (p = 0.026). Incision area was smaller in CDL compared with the control (p = 0.027), and not different between laser and electrocautery groups (p = 0.199). The lateral thermal damage produced by electrocautery was the largest, with a significant difference between laser and electrocautery (p = 0.018), and between electrocautery and control (p = 0.004), whereas the comparison between laser and control showed no significant differences (p = 0.588). The posterior laryngofissure incision using a 980-nm CDL is feasible resulting in smaller incisional area and less lateral thermal damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call