Abstract

In this paper we provide general conditions to check on the model and the prior to derive posterior concentration rates for data-dependent priors (or empirical Bayes approaches). We aim at providing conditions that are close to the conditions provided in the seminal paper by Ghosal & van der Vaart (2007). We then apply the general theorem to two different settings: the estimation of a density using Dirichlet process mixtures of Gaussian random variables with base measure depending on some empirical quantities and the estimation of the intensity of a counting process under the Aalen model. A simulation study for inhomogeneous Poisson processes also illustrates our results. In the former case we also derive some results on the estimation of the mixing density and on the deconvolution problem. In the latter, we provide a general theorem on posterior concentration rates for counting processes with Aalen multiplicative intensity with priors not depending on the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.