Abstract
A new Wald-type statistic is proposed for hypothesis testing based on Bayesian posterior distributions under the correct model specification. The new statistic can be explained as a posterior version of the Wald statistic and has several nice properties. First, it is well-defined under improper prior distributions. Second, it avoids Jeffreys–Lindley–Bartlett’s paradox. Third, under the null hypothesis and repeated sampling, it follows a χ2 distribution asymptotically, offering an asymptotically pivotal test. Fourth, it only requires inverting the posterior covariance for parameters of interest. Fifth and perhaps most importantly, when a random sample from the posterior distribution (such as MCMC output) is available, the proposed statistic can be easily obtained as a by-product of posterior simulation. In addition, the numerical standard error of the estimated proposed statistic can be computed based on random samples. A robust version of the test statistic is developed under model misspecification and inherits many nice properties of the new posterior statistic. The finite sample performance of the statistics is examined in Monte Carlo studies. The method is applied to two latent variable models used in microeconometrics and financial econometrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.