Abstract

We propose a new model selection method, named the posterior averaging information criterion, for Bayesian model assessment to minimize the risk of predicting independent future observations. The theoretical foundation is built on the Kullback-Leibler divergence to quantify the similarity between the proposed candidate model and the underlying true model. From a Bayesian perspective, our method evaluates the candidate models over the entire posterior distribution in terms of predicting a future independent observation. Without assuming that the true distribution is contained in the candidate models, the new criterion is developed by correcting the asymptotic bias of the posterior mean of the in-sample log-likelihood against out-of-sample log-likelihood, and can be generally applied even for Bayesian models with degenerate non-informative priors. Simulations in both normal and binomial settings demonstrate superior small sample performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.