Abstract

During eye growth, scleral development critically determine eye size and thus the refractive status of the eye. Scleral remodeling in myopia includes scleral thinning, loss of scleral tissue, and weakening of the mechanical properties. Therefore, an intervention aiming at stiffening scleral tissues (crosslinking, SCXL) may provide a way to prevent or treat myopia. The development of SCXL requires tools to evaluate the effects of crosslinking on the mechanical properties of tissues, particularly in sclera where the mechanical properties are more spatially heterogeneous than in the cornea, anisotropic, and varying locally from the anterior to posterior regions. Here, we apply the high-frequency OCE technique to measure the heterogeneous mechanical properties of posterior scleral tissues and, evaluate the changes in shear moduli after SCXL. As a model system, we use ex vivo in porcine eyes and riboflavin-assisted UV crosslinking. From measured elastic wave speeds (6-16kHz), the average out-of-plane shear modulus was 0.71±0.12MPa (n=20) for normal scleras. After treatment, the shear modulus increased to 1.50±0.39MPa. This 2-fold change was consistent with the increase of static Young's modulus from 5.5±.1 to 9.3±1.9MPa after crosslinking, using conventional uniaxial extensometry. OCE revealed regional stiffness differences across the temporal, nasal, and deeper posterior sclera, demonstrating its potential as a noninvasive tool to test the effect of scleral crosslinking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.