Abstract

<p>Strong earthquakes, especially on mountain slopes, generate unconsolidated deposits of regolith, prone to remobilization by aftershocks and rainstorms. Assessing the hazard they pose and what controls their remobilizations in the years following the mainshock has not yet been attempted, primarily because of the lack of multitemporal landslide inventories. By exploiting a multitemporal inventory (2005–2018) covering the epicentral region of the 2008 Wenchuan earthquake and a set of predictor variables (seismic, topographic, and hydrological), we perform statistical tests to understand the evolution of controlling factors for debris remobilization in time. Our analyses, supported by a random-forest susceptibility assessment model, reveal a prediction capability of seismic-related variables depleting with time, as opposed to hydro-topographic parameters gaining importance and becoming predominant within a decade. Results may have important implications on the way conventional susceptibility/hazard assessment models should be employed in areas where coseismic landslides are the main sediment production mechanism on slopes.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call