Abstract

Belatacept is used to prevent allograft rejection but fails to do so in a sizable minority of patients due to inadequate control of costimulation-resistant T cells. In this study, we report control of costimulation-resistant rejection when belatacept was combined with perioperative alemtuzumab-mediated lymphocyte depletion and rapamycin. To assess the means by which the alemtuzumab, belatacept and rapamycin (ABR) regimen controls belatacept-resistant rejection, we studied 20 ABR-treated patients and characterized peripheral lymphocyte phenotype and functional responses to donor, third-party and viral antigens using flow cytometry, intracellular cytokine staining and carboxyfluorescein succinimidyl ester-based lymphocyte proliferation. Compared with conventional immunosuppression in 10 patients, lymphocyte depletion evoked substantial homeostatic lymphocyte activation balanced by regulatory T and B cell phenotypes. The reconstituted T cell repertoire was enriched for CD28(+) naïve cells, notably diminished in belatacept-resistant CD28(-) memory subsets and depleted of polyfunctional donor-specific T cells but able to respond to third-party and latent herpes viruses. B cell responses were similarly favorable, without alloantibody development and a reduction in memory subsets-changes not seen in conventionally treated patients. The ABR regimen uniquely altered the immune profile, producing a repertoire enriched for CD28(+) T cells, hyporesponsive to donor alloantigen and competent in its protective immune capabilities. The resulting repertoire was permissive for control of rejection with belatacept monotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call