Abstract
Goodwin's brush-tailed mouse (Calomyscus elburzensis Goodwin, 1939) is a poorly known small rodent that occupies rocky habitats in Iran, Turkmenistan, Afghanistan, Pakistan, Azerbaijan, and Syria. Herein, a detailed description of the shape, size, and function of the postcranial skeleton of this species is presented for the first time. Trapping was carried out in eastern Iran between the years 2013 and 2015. Skeletal parts of 24 adult male specimens were removed using the papain digestion protocol, and several postcranial morphological characteristics and measurements were examined. We attempted to achieve a morpho-functional characterization of Goodwin's brush-tailed mouse and to match morphological specializations with previous information on the ecology, behavior, and phylogenetic inferences of this rodent. Goodwin's brush-tailed mouse has extended transverse processes and long zygapophyses in the first five caudal vertebrae along with a good innervation of the caudal vertebrae, which has resulted in a well-developed basal musculature of the tail. It has extended forelimb, long ilium, and short post-acetabular part of the innominate bone, loose hip joint with high degree of lateral movement of the hindlimb, and long distal elements of the hindlimb. These features have resulted in fast terrestrial movements in open microhabitats, including climbing and jumping. Although superficial scratching of the ground is observed, the species is incapable of digging burrows. Evaluation of postcranial morphological characteristics and character states further indicated the basal radiation of the genus Calomyscus among other Muroidea. Findings constitute a source of information for morpho-functional and phylogenetic comparisons between Calomyscidae and other mouse-like muroids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of experimental zoology. Part A, Ecological and integrative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.