Abstract

The main aim of the present review was to update the available evidence on the value interest of post-competition recovery strategies in male professional or semi-professional soccer players to determine its effect on post-game performance outcomes, physiological markers, and wellness indicators. A structured search was carried out following the PRISMA guidelines using six online databases: Pubmed, Scopus, SPORTDiscus, Web of Science, CINAHL and Cochrane Central Register of Controlled Trials. The risk of bias was completed following the Cochrane Collaboration Guidelines. Meta-analyses of randomized controlled trials were conducted to determine the between and within-group effects of different recovery strategies on performance, physiological markers and wellness data. Final meta-analyses were performed using the random-effects model and pooled standardized mean differences (SMD). Five randomized controlled trials that used Compression Garments (n = 3), Cold Water Immersion (n = 1), and acute Sleep Hygiene Strategy (n = 1) were included. Greater CMJ values at 48h for the intervention group (SMD = 0.70; 95% CI 0.14 to 1.25; p = 0.001; I2 = 10.4%) were found. For the 20-m sprint and MVC, the results showed no difference either at 24h or 48h. For physiological markers (CK and CRP) and wellness data (DOMS), small to large SMD were present in favor of the intervention group both at 24h (-0.12 to -1.86) and 48h (-0.21 to -0.85). No heterogeneity was present, except for MVC at 24h (I2 = 90.4%; p = 0.0012) and CALF DOMS at 48h (I2 = 93.7%; p = 0.013). The use of recovery strategies offers significant positive effects only in jumping performance (CMJ), with no effects on the 20-m sprint or MVC. Also, the use of recovery strategies offers greater positive effects on muscle damage (physiological markers and wellness data), highlighting the importance of post-match recovery strategies in soccer.

Highlights

  • The interaction between training load, fatigue, adaptation, and recovery is an element of extreme complexity comprising factors of a very different nature [1, 2]

  • Greater CMJ values at 48h for the intervention group (SMD = 0.70; 95% CI 0.14 to 1.25; p = 0.001; I2 = 10.4%) were found

  • A systematic review and meta-analysis focusing on the effects of different recovery strategies in professional soccer contexts were reported following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement (PRISMA) [64]

Read more

Summary

Introduction

The interaction between training load, fatigue, adaptation, and recovery is an element of extreme complexity comprising factors of a very different nature [1, 2]. Recovering as quickly as possible, restoring pre-performance levels is considered a crucial element of success in almost every athletic discipline [9]. For this reason, coaches and athletes are always in a continuous search for the most effective strategies to speed up post-exercise recovery [2, 9,10,11]. Precisely defining the concept of “recovery from exercise” is a challenging mission due to the number of variables affecting an optimal recovery [12] This pioneering idea has inspired a multi-factorial approach to the “physiology of recovery,” evidencing the need for more conclusive research [13]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.