Abstract
ABSTRACTThe effect of shape memory alloy (SMA) on the postbuckling behavior of rectangular cross-ply and angle-ply plates by varying the SMA fiber spacing was investigated using the Finite Element Method. The formulation of the location-dependent linear, nonlinear stiffness matrices due to non-homogeneous material properties and the temperature-dependent recovery stress stiffness matrix were derived. Numerical results show that the increase of SMA fiber volume fraction and prestrain may generate more recovery stress, and increase the stiffness of SMA reinforced composite laminate. Therefore, the postbuckling deflections of the plate may be decreased significantly. The buckling mode that plate will buckle into is dependent on the fiber orientation of the angle-ply laminates. When the SMA fibers are concentrated in the center of the plate, the postbuckling deflections of the plate will be decreased considerably.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.