Abstract

An infinite elastic sheet, subject to axial forces, is pressurized on one side and constrained on the other side by a rigid flat surface. The post-buckling problem is solved by perturbation analysis and numerical integration. We find the buckling force of a perfect sheet is infinite. As displacement increases, the sheet undergoes three stages. In Stage I the sheet does not touch itself and is in unstable equilibrium for constant axial force. The sheet in Stage II has one point in contact with itself and is stable. Stage III is neutrally stable with one segment collapsed. A finite stability criterion is defined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.