Abstract

A postbuckling analysis is presented for a circular cylindrical shell of finite length which is subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory which includes effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometrical imperfection of shells. The analysis uses a singular perturbation technique to determine interactive buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect cylindrical shells. Typical results are presented in dimensionless graphical form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call