Abstract

Postanthesis green area duration (GAD) has been associated frequently with yield. The senescence pattern of green organs is a major component of GAD. It has been proposed that delayed or accelerated senescence is strongly controlled by environmental conditions and the level of source or sink limitation on grain growth. In particular, it has been generally reported that the removal of reproductive structures delays the senescence process. However, results reporting this effect in wheat are not conclusive. A field experiment was conducted at the experimental station of The University of Melbourne comprising a factorial combination of a semidwarf and a standard-height wheat, and two levels of sink strength. At anthesis, 20 main shoots were tagged and detillered. Ten days after anthesis all the spikelets from one side of 10 tagged ears were removed by hand. The experiment was performed under natural, and 3 h-extended photoperiods from seedling emergence to heading. The photoperiod treatments induced differing grain filling environments and differing plant characteristics at onset of grain filling. Green area senescence was similar for both sink size treatments at any combination of cultivar and grain filling condition, indicating that the dynamics of plant senescence was insensitive to a severe reduction in number of grains per spike. Therefore, GAD was not significantly affected by the reduction in sink strength. The number of grains per spike were reduced to ca. 50% due to trimming. Therefore, source-sink ratio was doubled, but no significant changes in individual grain weight were found. There was no relationship between GAD and individual grain weight, confirming that grain growth in field-grown wheat is not limited by the strength of the source. Alternatively, our results confirmed that field-grown wheat is sink-limited during grain filling and that the likely accumulation of soluble carbohydrates in leaves does not affect the onset or rate of senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.