Abstract

The objective of this study was to investigate the effects of postactivation treatment with nocodazole on morphologic changes of donor nuclei and in vitro and in vivo development of somatic cell nucleus transfer (SCNT) embryos in pigs (Sus scrofa). Somatic cell nucleus transfer oocytes were either untreated (control) or treated with nocodazole or demecolcine after electric activation, then cultured in vitro or transferred to surrogate pigs. Treatment with nocodazole (30%) and demecolcine (29%) after electric activation improved embryo development to the blastocyst stage compared with the control (16%). The rate of oocytes that formed single clusters of chromosomes or a pronucleus 4 h after activation was higher after treatment with nocodazole (82%) and demecolcine (86%) than under the control conditions (66%), and this tendency was not altered even 12 h after activation. Pseudo-polar body extrusion was inhibited by nocodazole and demecolcine, and the rate of embryos with diploid chromosomes was higher after treatment with nocodazole (86%) and demecolcine (77%) than under control conditions (58%). Nocodazole treatment resulted in a farrowing rate of 50% with a 1.7% efficiency of piglet production, whereas controls showed a farrowing rate of 60% and a production efficiency of 3.8%. Our results demonstrate that postactivation treatment with nocodazole maintains normal nuclear ploidy of cloned embryos likely by increasing nuclear retention and formation of single pronuclei. In vivo development could be achieved from the transfer of nocodazole-treated embryos but showed some defects compared with control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call