Abstract

The purposes of this study were to determine whether performing dynamic conditioning activities (CAs) contributes to postactivation potentiation (PAP); to examine the potential confounding effects of CAs with different velocity, total contraction duration, and total work characteristics; and to gain a greater understanding of potential peripheral and central mechanisms underlying PAP. Voluntary (isokinetic knee extensions at 180°·s(-1)) and electrically evoked torques and electromyogram (EMG) data were captured before and 1, 4, 7, 10, and 13 min after 5 different dynamic CAs (4 knee extensions at 60°·s(-1), 4 and 12 at 180°·s(-1), and 4 and 20 at 300°·s(-1)), after the participants had completed a full warm-up including extensive task-specific practice to the point where maximal voluntary contractile capacity was achieved. Even after maximal voluntary contractile capacity had been achieved, the imposition of CAs of longer total contraction duration (6 s) and a minimum total work of ∼750-900 J elicited significant increases in both voluntary (for 7 min; up to 5.9%) and twitch (for 4 min; up to 13.5%) torques (i.e., PAP), regardless of the velocity of the CA. No changes in EMG:M-wave were detected after any CA. A dynamic voluntary CA can contribute to improved voluntary and electrically evoked torques even when maximal voluntary contractile capacity has previously been achieved. Furthermore, a minimum CA contraction duration and minimum total work appear important to increase torque production, although movement velocity appears unimportant. Changes in peripheral function but not central drive may have contributed to the observed PAP under the present conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.