Abstract

Applying accommodating resistance combined with isoinertial resistance has been demonstrated to be effective in improving neuromuscular attributes important for sport performance. The main purpose of this study was to determine whether short sprints can be acutely enhanced after several sets of back squats with or without accommodating resistance. Twenty recreationally resistance-trained males (age: 23.3 ± 4.4 years; height: 178.9 ± 6.5 cm; weight: 88.3 ± 10.8 kg) performed pre-post testing on 9.1-m sprint time. Three different interventions were implemented in randomized order between pre-post 9.1-m sprints. On 3 separate days, subjects either sat for 5 minutes (CTRL), performed 5 sets of 3 repetitions at 85% of their 1 repetition maximum (1RM) with isoinertial load (STND), or performed 5 sets of 3 repetitions at 85% of their 1RM, with 30% of the total resistance coming from elastic band tension (BAND) between pre-post 9.1-m sprint testing. Posttesting for 9.1-m sprint time occurred immediately after the last set of squats (Post-Immediate) and on every minute for 4 minutes after the last set of squats (Post-1min, Post-2min, Post-3min, and Post-4min). Repeated-measures analysis of variance statistical analyses revealed no significant changes in sprint time across posttesting times during the CTRL and STND condition. During the BAND condition, sprint time significantly decreased from Post-Immediate to Post-4min (p = 0.002). The uniqueness of accommodating resistance could create an optimal postactivation potentiation effect to increase neuromuscular performance. Coaches and athletes can implement heavy accommodating resistance exercises to their warm-up when improving acute sprint time is desired.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call