Abstract

The wear surface morphology of AlSi10Mg specimens, originally manufactured using selective laser melting (SLM), has been analyzed in the context of exposure to heat from gas flames. The first stage of the experimental work included the performance of surface heat-exposure on SLM-prepared specimens through oxyacetylene gas welding. Gas welding was utilized with three different flames, namely; reducing, neutral, and oxidizing on the as-built specimens of SLM. The post-surface-treated specimens were subjected to pin-on-disk wear testing against fixed parameters. After the performance of wear testing at two different radii, the mass loss of each of the four types of specimens was calculated including the three specimens exposed to heat along with the as-built specimens. The results showed that the maximum amount of mass losses at 24 mm and 30 mm radii belongs to the neutral flame specimens and the least was for the as-built condition specimens. Upon analysis, the heat-exposure specimens through all three types of gas flames resulted in an increase in the amount of mass in contrast to the as-built specimens. Moreover, the morphologies of the developed wear tracks at surfaces were examined using the scanning electron microscope (SEM) for the understating of the mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.