Abstract

Microsomal aldehyde dehydrogenase (msALDH) is a tail-anchored protein localized to the cytoplasmic face of the endoplasmic reticulum (ER). The carboxyl-terminal 35 amino acids of msALDH possess ER-targeting sequences in addition to a hydrophobic membrane-spanning domain. To study the mechanism for ER targeting of this protein in vivo, we took advantage of a green fluorescent protein-msALDH fusion protein containing the last 35 amino acids of msALDH [GFPALDH(35)]. When expressed from cDNA in COS-7 cells, the fusion protein was localized to the ER. We then prepared a recombinant fusion protein and injected it into the cytoplasm of COS-7 cells. The injected protein was correctly localized to the ER after a 30-min incubation at 37 degrees C. However, a recombinant fusion protein that contained only the transmembrane domain of msALDH failed to be targeted to the ER. When the assay was carried out at 4 degrees C, the recombinant GFPALDH(35) remained in the cytoplasm. Moreover, incubation of COS-7 cells under conditions of ATP depletion resulted in the cytoplasmic distribution of the injected protein. These results indicate that GFPALDH(35) is targeted to the ER post-translationally via an ATP-dependent pathway. This microinjection system worked effectively in different mammalian cell types, suggesting a common mechanism for ER targeting of the tail-anchored protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.